Problem

Source:

Tags: modular arithmetic, number theory, relatively prime, More Sequences



Let $\,n>6\,$ be an integer and $\,a_{1},a_{2},\ldots,a_{k}\,$ be all the natural numbers less than $n$ and relatively prime to $n$. If \[a_{2}-a_{1}=a_{3}-a_{2}=\cdots =a_{k}-a_{k-1}>0,\] prove that $\,n\,$ must be either a prime number or a power of $\,2$.