(Leo Moser) Show that the Diophantine equation \[\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}+\frac{1}{x_{1}x_{2}\cdots x_{n}}= 1\] has at least one solution for every positive integers $n$.
Problem
Source:
Tags: induction, number theory, Diophantine equation, Diophantine Equations
03.01.2008 20:24
Induction on $ n$ $ n=2$ $ \frac {1}{2} + \frac {1}{3} + \frac {1}{2 \cdot 3} = 1$ Suppose that you have a solution $ x_i$ for $ n$ $ \frac {1}{x_{1}} + \frac {1}{x_{2}} + \cdots + \frac {1}{x_{n}} + \frac {1}{x_{1}x_{2}\cdots x_{n}} = 1$ Defining $ y_i=x_i$ for $ i=1,2, \cdots n$ $ y_{n+1}= x_{1}x_{2}\cdots x_{n}+1$ $ \frac {1}{y_{1}} + \frac {1}{y_{2}} + \cdots + \frac {1}{y_{n}}+ \frac {1}{y_{n+1}} + \frac {1}{y_{1}y_{2}\cdots y_{n+1}}=$ $ \frac {1}{x_{1}} + \frac {1}{x_{2}} + \cdots + \frac {1}{x_{n}}+ \frac {1}{x_{1}x_{2}\cdots x_{n}+1} + \frac {1}{x_{1}x_{2}\cdots x_{n} (x_{1}x_{2}\cdots x_{n}+1)}=$ $ 1- \frac {1}{x_{1}x_{2}\cdots x_{n}} + \frac {1}{x_{1}x_{2}\cdots x_{n}+1} + \frac {1}{x_{1}x_{2}\cdots x_{n} (x_{1}x_{2}\cdots x_{n}+1)}=$ $ 1+\frac{1+x_{1}x_{2}\cdots x_{n}-(x_{1}x_{2}\cdots x_{n}+1)}{x_{1}x_{2}\cdots x_{n} (x_{1}x_{2}\cdots x_{n}+1)}=1$
13.05.2012 13:10
Great problem, and also great solution. Where does the idea of defining $y_i = x_i$ for $i=1,2,...,n$ and $y_{n+1} = x_1 x_2 ... x_n + 1$ comes from?
13.05.2012 17:53
silvergrasshopper wrote: Great problem, and also great solution. Where does the idea of defining $y_i = x_i$ for $i=1,2,...,n$ and $y_{n+1} = x_1 x_2 ... x_n + 1$ comes from? Thanks! The idea comes from trying to use induction from smaller cases, defining $y_i = x_i$ for $i=1,2,...,n$ and then getting the value of $y_{i+1}$
13.05.2012 18:52
http://mathworld.wolfram.com/SylvestersSequence.html
14.01.2014 06:56
mszew wrote: Induction on $ n$ $ n=2$ $ \frac {1}{2} + \frac {1}{3} + \frac {1}{2 \cdot 3} = 1$ Suppose that you have a solution $ x_i$ for $ n$ $ \frac {1}{x_{1}} + \frac {1}{x_{2}} + \cdots + \frac {1}{x_{n}} + \frac {1}{x_{1}x_{2}\cdots x_{n}} = 1$ Defining $ y_i=x_i$ for $ i=1,2, \cdots n$ $ y_{n+1}= x_{1}x_{2}\cdots x_{n}+1$ $ \frac {1}{y_{1}} + \frac {1}{y_{2}} + \cdots + \frac {1}{y_{n}}+ \frac {1}{y_{n+1}} + \frac {1}{y_{1}y_{2}\cdots y_{n+1}}=$ $ \frac {1}{x_{1}} + \frac {1}{x_{2}} + \cdots + \frac {1}{x_{n}}+ \frac {1}{x_{1}x_{2}\cdots x_{n}+1} + \frac {1}{x_{1}x_{2}\cdots x_{n} (x_{1}x_{2}\cdots x_{n}+1)}=$ $ 1- \frac {1}{x_{1}x_{2}\cdots x_{n}} + \frac {1}{x_{1}x_{2}\cdots x_{n}+1} + \frac {1}{x_{1}x_{2}\cdots x_{n} (x_{1}x_{2}\cdots x_{n}+1)}=$ $ 1+\frac{1+x_{1}x_{2}\cdots x_{n}-(x_{1}x_{2}\cdots x_{n}+1)}{x_{1}x_{2}\cdots x_{n} (x_{1}x_{2}\cdots x_{n}+1)}=1$ where $ y_{n+1}= x_{1}x_{2}\cdots x_{n}+1$