Problem

Source:

Tags: modular arithmetic, Diophantine Equations



Suppose that $a, b$, and $p$ are integers such that $b \equiv 1 \; \pmod{4}$, $p \equiv 3 \; \pmod{4}$, $p$ is prime, and if $q$ is any prime divisor of $a$ such that $q \equiv 3 \; \pmod{4}$, then $q^{p}\vert a^{2}$ and $p$ does not divide $q-1$ (if $q=p$, then also $q \vert b$). Show that the equation \[x^{2}+4a^{2}= y^{p}-b^{p}\] has no solutions in integers.