Does there exist an integer such that its cube is equal to $3n^2 +3n+7$, where $n$ is integer?
Problem
Source:
Tags: geometry, 3D geometry, modular arithmetic, Diophantine Equations, pen
15.10.2007 16:36
Consider $ 3n^2 + 3n + 7$ $ \pmod 9$. If $ n\equiv 0\pmod 3$ or $ n\equiv 2\pmod 3$ then $ n^2 + n = n(n + 1)\equiv 0\pmod 3$; if $ n\equiv 1 \pmod 3$ then $ n^2 + n\equiv 2\pmod 3$. Therefore, $ n^2 + n\equiv 0$ or $ 2 \pmod 9$ hence $ 3n^3 + 3n\equiv 0$ or $ 6\pmod 9$, so $ 3n^2 + 3n + 7\equiv 7$ or $ 4\pmod 9$. However, because any cube of an integer is congruent to $ - 1,0,$ or $ 1$ $ \pmod 9$ then it is impossible for a cube of an ineteger to be congruent to $ 4$ or $ 7\pmod 9$, so no cube of an integer can be equal to $ 3n^3 + 3n + 7$ where $ n$ is an integer, QED.
26.03.2017 08:25
@rem $ n^2 + n\equiv 0$ or $ 2 \pmod 9$ This conclusion is wrong , such as $ n \equiv 2 \pmod{9} $ then $ n^2 + n\equiv 6 \pmod{9}$
31.10.2018 15:47
The elliptic curve $y^2 + 9y = x^3 - 189$ has Mordell-Weil group $E(\mathbf{Q}) = 0$ (no non-trivial torsion and trivial $2$-Selmer group).
08.11.2018 16:10