Problem

Source:

Tags: Divisibility Theory



Suppose that $n$ has (at least) two essentially distinct representations as a sum of two squares. Specifically, let $n=s^{2}+t^{2}=u^{2}+v^{2}$, where $s \ge t \ge 0$, $u \ge v \ge 0$, and $s>u$. Show that $\gcd(su-tv, n)$ is a proper divisor of $n$.