2017 Kazakhstan National Olympiad

grade 11

day 1

1

The non-isosceles triangle $ABC$ is inscribed in the circle $\omega$. The tangent line to this circle at the point $C$ intersects the line $AB$ at the point $D$. Let the bisector of the angle $CDB$ intersect the segments $AC$ and $BC$ at the points $K$ and $L$, respectively. The point $M$ is on the side $AB$ such that $\frac{AK}{BL} = \frac{AM}{BM}$. Let the perpendiculars from the point $M$ to the straight lines $KL$ and $DC$ intersect the lines $AC$ and $DC$ at the points $P$ and $Q$ respectively. Prove that $2\angle CQP=\angle ACB$

2

For positive reals $x,y,z\ge \frac{1}{2}$ with $x^2+y^2+z^2=1$, prove this inequality holds $$(\frac{1}{x}+\frac{1}{y}-\frac{1}{z})(\frac{1}{x}-\frac{1}{y}+\frac{1}{z})\ge 2$$

3

$\{a_n\}$ is an infinite, strictly increasing sequence of positive integers and $a_{a_n}\leq a_n+a_{n+3}$ for all $n\geq 1$. Prove that, there are infinitely many triples $(k,l,m)$ of positive integers such that $k<l<m$ and $a_k+a_m=2a_l$

day 2

4

The acute triangle $ABC$ $(AC> BC)$ is inscribed in a circle with the center at the point $O$, and $CD$ is the diameter of this circle. The point $K$ is on the continuation of the ray $DA$ beyond the point $A$. And the point $L$ is on the segment $BD$ $(DL> LB)$ so that $\angle OKD = \angle BAC$, $\angle OLD = \angle ABC$. Prove that the line $KL$ passes through the midpoint of the segment $AB$.

5

Consider all possible sets of natural numbers $(x_1, x_2, ..., x_{100})$ such that $1\leq x_i \leq 2017$ for every $i = 1,2, ..., 100$. We say that the set $(y_1, y_2, ..., y_{100})$ is greater than the set $(z_1, z_2, ..., z_{100})$ if $y_i> z_i$ for every $i = 1,2, ..., 100$. What is the largest number of sets that can be written on the board, so that any set is not more than the other set?

6

Show that there exist infinitely many composite positive integers $n$ such that $n$ divides $2^{\frac{n-1}{2}}+1$