2020 Balkan MO

November 1st

1

Let $ABC$ be an acute triangle with $AB=AC$, let $D$ be the midpoint of the side $AC$, and let $\gamma$ be the circumcircle of the triangle $ABD$. The tangent of $\gamma$ at $A$ crosses the line $BC$ at $E$. Let $O$ be the circumcenter of the triangle $ABE$. Prove that midpoint of the segment $AO$ lies on $\gamma$. Proposed by Sam Bealing, United Kingdom

2

Denote $\mathbb{Z}_{>0}=\{1,2,3,...\}$ the set of all positive integers. Determine all functions $f:\mathbb{Z}_{>0}\rightarrow \mathbb{Z}_{>0}$ such that, for each positive integer $n$, $\hspace{1cm}i) \sum_{k=1}^{n}f(k)$ is a perfect square, and $\vspace{0.1cm}$ $\hspace{1cm}ii) f(n)$ divides $n^3$. Proposed by Dorlir Ahmeti, Albania

3

Let $k$ be a positive integer. Determine the least positive integer $n$, with $n\geq k+1$, for which the game below can be played indefinitely: Consider $n$ boxes, labelled $b_1,b_2,...,b_n$. For each index $i$, box $b_i$ contains exactly $i$ coins. At each step, the following three substeps are performed in order: (1) Choose $k+1$ boxes; (2) Of these $k+1$ boxes, choose $k$ and remove at least half of the coins from each, and add to the remaining box, if labelled $b_i$, a number of $i$ coins. (3) If one of the boxes is left empty, the game ends; otherwise, go to the next step. Proposed by Demetres Christofides, Cyprus

4

Let $a_1=2$ and, for every positive integer $n$, let $a_{n+1}$ be the smallest integer strictly greater than $a_n$ that has more positive divisors than $a_n$. Prove that $2a_{n+1}=3a_n$ only for finitely many indicies $n$. Proposed by Ilija JovĨevski, North Macedonia