Find the least positive integer $n$, such that there is a polynomial \[ P(x) = a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+\dots+a_1x+a_0 \] with real coefficients that satisfies both of the following properties: - For $i=0,1,\dots,2n$ it is $2014 \leq a_i \leq 2015$. - There is a real number $\xi$ with $P(\xi)=0$.
2015 Germany Team Selection Test
VAIMO 1
A positive integer $n$ is called naughty if it can be written in the form $n=a^b+b$ with integers $a,b \geq 2$. Is there a sequence of $102$ consecutive positive integers such that exactly $100$ of those numbers are naughty?
Let $ABC$ be an acute triangle with $|AB| \neq |AC|$ and the midpoints of segments $[AB]$ and $[AC]$ be $D$ resp. $E$. The circumcircles of the triangles $BCD$ and $BCE$ intersect the circumcircle of triangle $ADE$ in $P$ resp. $Q$ with $P \neq D$ and $Q \neq E$. Prove $|AP|=|AQ|$. (Notation: $|\cdot|$ denotes the length of a segment and $[\cdot]$ denotes the line segment.)
VAIMO 2
Determine all pairs $(x, y)$ of positive integers such that \[\sqrt[3]{7x^2-13xy+7y^2}=|x-y|+1.\] Proposed by Titu Andreescu, USA
Let $ABC$ be an acute triangle with the circumcircle $k$ and incenter $I$. The perpendicular through $I$ in $CI$ intersects segment $[BC]$ in $U$ and $k$ in $V$. In particular $V$ and $A$ are on different sides of $BC$. The parallel line through $U$ to $AI$ intersects $AV$ in $X$. Prove: If $XI$ and $AI$ are perpendicular to each other, then $XI$ intersects segment $[AC]$ in its midpoint $M$. (Notation: $[\cdot]$ denotes the line segment.)
Construct a tetromino by attaching two $2 \times 1$ dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them $S$- and $Z$-tetrominoes, respectively. Assume that a lattice polygon $P$ can be tiled with $S$-tetrominoes. Prove that no matter how we tile $P$ using only $S$- and $Z$-tetrominoes, we always use an even number of $Z$-tetrominoes. Proposed by Tamas Fleiner and Peter Pal Pach, Hungary