2020 Junior Balkаn MO

1

Find all triples $(a,b,c)$ of real numbers such that the following system holds: $$\begin{cases} a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \\a^2+b^2+c^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\end{cases}$$ Proposed by Dorlir Ahmeti, Albania

2

Let $\triangle ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$ and let $E$ be the foot of the perpendicular from $A$ to $BC$. Let $Z \ne A$ be a point on the line $AB$ with $AB = BZ$. Let $(c)$ be the circumcircle of the triangle $\triangle AEZ$. Let $D$ be the second point of intersection of $(c)$ with $ZC$ and let $F$ be the antidiametric point of $D$ with respect to $(c)$. Let $P$ be the point of intersection of the lines $FE$ and $CZ$. If the tangent to $(c)$ at $Z$ meets $PA$ at $T$, prove that the points $T$, $E$, $B$, $Z$ are concyclic. Proposed by Theoklitos Parayiou, Cyprus

3

Alice and Bob play the following game: Alice picks a set $A = \{1, 2, ..., n \}$ for some natural number $n \ge 2$. Then, starting from Bob, they alternatively choose one number from the set $A$, according to the following conditions: initially Bob chooses any number he wants, afterwards the number chosen at each step should be distinct from all the already chosen numbers and should differ by $1$ from an already chosen number. The game ends when all numbers from the set $A$ are chosen. Alice wins if the sum of all the numbers that she has chosen is composite. Otherwise Bob wins. Decide which player has a winning strategy. Proposed by Demetres Christofides, Cyprus

4

Find all prime numbers $p$ and $q$ such that $$1 + \frac{p^q - q^p}{p + q}$$is a prime number. Proposed by Dorlir Ahmeti, Albania