$A_1, A_2, ..., A_n$ are the subsets of $|S|=2019$ such that union of any three of them gives $S$ but if we combine two of subsets it doesn't give us $S$. Find the maximum value of $n$.
2019 Turkey EGMO TST
Let $a,b,c$ be positive reals such that $abc=1$, $a+b+c=5$ and $$(ab+2a+2b-9)(bc+2b+2c-9)(ca+2c+2a-9)\geq 0$$. Find the minimum value of $$\frac {1}{a}+ \frac {1}{b}+ \frac{1}{c}$$
Let $\omega$ be the circumcircle of $\Delta ABC$, where $|AB|=|AC|$. Let $D$ be any point on the minor arc $AC$. Let $E$ be the reflection of point $B$ in line $AD$. Let $F$ be the intersection of $\omega$ and line $BE$ and Let $K$ be the intersection of line $AC$ and the tangent at $F$. If line $AB$ intersects line $FD$ at $L$, Show that $K,L,E$ are collinear points
Let $\sigma (n)$ shows the number of positive divisors of $n$. Let $s(n)$ be the number of positive divisors of $n+1$ such that for every divisor $a$, $a-1$ is also a divisor of $n$. Find the maximum value of $2s(n)- \sigma (n) $.
Let $D$ be the midpoint of $\overline{BC}$ in $\Delta ABC$. Let $P$ be any point on $\overline{AD}$. If the internal angle bisector of $\angle ABP$ and $\angle ACP$ intersect at $Q$. Prove that, if $BQ \perp QC$, then $Q$ lies on $AD$
There are $k$ piles and there are $2019$ stones totally. In every move we split a pile into two or remove one pile. Using finite moves we can reach conclusion that there are $k$ piles left and all of them contain different number of stonws. Find the maximum of $k$.