Solve the equation in nonnegative integers $a,b,c$: $3^a+2^b+2015=3c!$ I.Gorodnin
2015 Belarus Team Selection Test
Test 1
All the numbers $1,2,...,9$ are written in the cells of a $3\times 3$ table (exactly one number in a cell) . Per move it is allowed to choose an arbitrary $2\times2$ square of the table and either decrease by $1$ or increase by $1$ all four numbers of the square. After some number of such moves all numbers of the table become equal to some number $a$. Find all possible values of $a$. I.Voronovich
The incircle of the triangle $ABC$ touches the sides $AC$ and $BC$ at points $P$ and $Q$ respectively. $N$ and $M$ are the midpoints of $AC$ and $BC$ respectively. Let $X=AM\cap BP, Y=BN\cap AQ$. Given $C,X,Y$ are collinear, prove that $CX$ is the angle bisector of the angle $ACB$. I. Gorodnin
Prove that $(a+b+c)^5 \ge 81 (a^2+b^2+c^2)abc$ for any positive real numbers $a,b,c$ I.Gorodnin
Test 2
N numbers are marked in the set $\{1,2,...,2000\}$ so that any pair of the numbers $(1,2),(2,4),...,(1000,2000)$ contains at least one marked number. Find the least possible value of $N$. I.Gorodnin
In the sequence of digits $2,0,2,9,3,...$ any digit it equal to the last digit in the decimal representation of the sum of four previous digits. Do the four numbers $2,0,1,5$ in that order occur in the sequence? Folklore
Let the incircle of the triangle $ABC$ touch the side $AB$ at point $Q$. The incircles of the triangles $QAC$ and $QBC$ touch $AQ,AC$ and $BQ,BC$ at points $P,T$ and $D,F$ respectively. Prove that $PDFT$ is a cyclic quadrilateral. I.Gorodnin
Find all pairs of polynomials $p(x),q(x)\in R[x]$ satisfying the equality $p(x^2)=p(x)q(1-x)+p(1-x)q(x)$ for all real $x$. I.Voronovich
Test 3
Do there exist numbers $a,b \in R$ and surjective function $f: R \to R$ such that $f(f(x)) = bx f(x) +a$ for all real $x$? I.Voronovich
The medians $AM$ and $BN$ of a triangle $ABC$ are the diameters of the circles $\omega_1$ and $\omega_2$. If $\omega_1$ touches the altitude $CH$, prove that $\omega_2$ also touches $CH$. I. Gorodnin
Let $n$ points be given inside a rectangle $R$ such that no two of them lie on a line parallel to one of the sides of $R$. The rectangle $R$ is to be dissected into smaller rectangles with sides parallel to the sides of $R$ in such a way that none of these rectangles contains any of the given points in its interior. Prove that we have to dissect $R$ into at least $n + 1$ smaller rectangles. Proposed by Serbia
Test 4
A circle intersects a parabola at four distinct points. Let $M$ and $N$ be the midpoints of the arcs of the circle which are outside the parabola. Prove that the line $MN$ is perpendicular to the axis of the parabola. I. Voronovich
Determine all pairs $(x, y)$ of positive integers such that \[\sqrt[3]{7x^2-13xy+7y^2}=|x-y|+1.\] Proposed by Titu Andreescu, USA
Construct a tetromino by attaching two $2 \times 1$ dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them $S$- and $Z$-tetrominoes, respectively. Assume that a lattice polygon $P$ can be tiled with $S$-tetrominoes. Prove that no matter how we tile $P$ using only $S$- and $Z$-tetrominoes, we always use an even number of $Z$-tetrominoes. Proposed by Tamas Fleiner and Peter Pal Pach, Hungary
Test 5
Find all positive integers $n$ such that $n=q(q^2-q-1)=r(2r+1)$ for some primes $q$ and $r$. B.Gilevich
Let $ABC$ be a triangle. The points $K, L,$ and $M$ lie on the segments $BC, CA,$ and $AB,$ respectively, such that the lines $AK, BL,$ and $CM$ intersect in a common point. Prove that it is possible to choose two of the triangles $ALM, BMK,$ and $CKL$ whose inradii sum up to at least the inradius of the triangle $ABC$. Proposed by Estonia
Consider all polynomials $P(x)$ with real coefficients that have the following property: for any two real numbers $x$ and $y$ one has \[|y^2-P(x)|\le 2|x|\quad\text{if and only if}\quad |x^2-P(y)|\le 2|y|.\] Determine all possible values of $P(0)$. Proposed by Belgium
Test 6
Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ . Proposed by Serbia
Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\] Proposed by Denmark
Consider a fixed circle $\Gamma$ with three fixed points $A, B,$ and $C$ on it. Also, let us fix a real number $\lambda \in(0,1)$. For a variable point $P \not\in\{A, B, C\}$ on $\Gamma$, let $M$ be the point on the segment $CP$ such that $CM =\lambda\cdot CP$ . Let $Q$ be the second point of intersection of the circumcircles of the triangles $AMP$ and $BMC$. Prove that as $P$ varies, the point $Q$ lies on a fixed circle. Proposed by Jack Edward Smith, UK
Test 7
We have $2^m$ sheets of paper, with the number $1$ written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are $a$ and $b$, then we erase these numbers and write the number $a + b$ on both sheets. Prove that after $m2^{m -1}$ steps, the sum of the numbers on all the sheets is at least $4^m$ . Proposed by Abbas Mehrabian, Iran
Given a cyclic $ABCD$ with $AB=AD$. Points $M$ and $N$ are marked on the sides $CD$ and $BC$, respectively, so that $DM+BN=MN$. Prove that the circumcenter of the triangle $AMN$ belongs to the segment $AC$. N.Sedrakian
Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.) Proposed by Hong Kong
Test 8
Given $m,n \in N$ such that $M>n^{n-1}$ and the numbers $m+1, m+2, ..., m+n$ are composite. Prove that exist distinct primes $p_1,p_2,...,p_n$ such that $M+k$ is divisible by $p_k$ for any $k=1,2,...,n$. Tuymaada Olympiad 2004, C.A.Grimm. USA
In a cyclic quadrilateral $ABCD$, the extensions of sides $AB$ and $CD$ meet at point $P$, and the extensions of sides $AD$ and $BC$ meet at point $Q$. Prove that the distance between the orthocenters of triangles $APD$ and $AQB$ is equal to the distance between the orthocenters of triangles $CQD$ and $BPC$.
Determine all functions $f: \mathbb{Z}\to\mathbb{Z}$ satisfying \[f\big(f(m)+n\big)+f(m)=f(n)+f(3m)+2014\] for all integers $m$ and $n$. Proposed by Netherlands