In triangle $ABC$, bisectors are drawn $AA_1$ and $CC_1$. Prove that if the length of the perpendiculars drawn from the vertex $B$ on lines $AA1$ and $CC_1$ are equal, then $\vartriangle ABC$ is isosceles.
Ukrainian Geometry Olympiad
grade VIII
Inside the triangle $ABC$ is point $P$, such that $BP > AP$ and $BP > CP$. Prove that $\angle ABC$ is acute.
Triangle $ABC$. Let $B_1$ and $C_1$ be such points, that $AB= BB_1, AC=CC_1$ and $B_1, C_1$ lie on the circumscribed circle $\Gamma$ of $\vartriangle ABC$. Perpendiculars drawn from from points $B_1$ and $C_1$ on the lines $AB$ and $AC$ intersect $\Gamma$ at points $B_2$ and $C_2$ respectively, these points lie on smaller arcs $AB$ and $AC$ of circle $\Gamma$ respectively, Prove that $BB_2 \parallel CC_2$.
grade IX
In the triangle $ABC$, ${{A}_{1}}$ and ${{C}_{1}} $ are the midpoints of sides $BC $ and $AB$ respectively. Point $P$ lies inside the triangle. Let $\angle BP {{C}_{1}} = \angle PCA$. Prove that $\angle BP {{A}_{1}} = \angle PAC $.
Point $M$ is the midpoint of the base $BC$ of trapezoid $ABCD$. On base $AD$, point $P$ is selected. Line $PM$ intersects line $DC$ at point $Q$, and the perpendicular from $P$ on the bases intersects line $BQ$ at point $K$. Prove that $\angle QBC = \angle KDA$.
Circles ${w}_{1},{w}_{2}$ intersect at points ${{A}_{1}} $ and ${{A}_{2}} $. Let $B$ be an arbitrary point on the circle ${{w}_{1}}$, and line $B{{A}_{2}}$ intersects circle ${{w}_{2}}$ at point $C$. Let $H$ be the orthocenter of $\Delta B{{A}_{1}}C$. Prove that for arbitrary choice of point $B$, the point $H$ lies on a certain fixed circle.
grade VIII
The three sides of the quadrilateral are equal, the angles between them are equal, respectively $90^o$ and $150^o$. Find the smallest angle of this quadrilateral in degrees.
On a circle noted $n$ points. It turned out that among the triangles with vertices in these points exactly half of the acute. Find all values $n$ in which this is possible.
About the pentagon $ABCDE$ we know that $AB = BC = CD = DE$, $\angle C = \angle D =108^o$, $\angle B = 96^o$. Find the value in degrees of $\angle E$.