2012 Junior Balkan Team Selection Tests - Romania

Day 1

1

Prove that if the positive real numbers $p$ and $q$ satisfy $\frac{1}{p}+\frac{1}{q}= 1$, then a) $\frac{1}{3} \le \frac{1}{p (p + 1)} +\frac{1}{q (q + 1)} <\frac{1}{2}$ b) $\frac{1}{p (p - 1)} + \frac{1}{q (q - 1)} \ge 1$

2

Let $x$ and $y$ be two rational numbers and $n$ be an odd positive integer. Prove that, if $x^n - 2x = y^n - 2y$, then $x = y$.

3

Consider the triangle $ABC$ and the points $D \in (BC)$ and $M \in (AD)$. Lines $BM$ and $AC$ meet at $E$, lines $CM$ and $AB$ meet at $F$, and lines $EF$ and $AD$ meet at $N$. Prove that $$\frac{AN}{DN}=\frac{1}{2}\cdot \frac{AM}{DM}$$

4

$100$ weights, measuring $1,2, ..., 100$ grams, respectively, are placed in the two pans of a scale such that the scale is balanced. Prove that two weights can be removed from each pan such that the equilibrium is not broken.

5

Let $ABC$ be a triangle and $A', B', C'$ the points in which its incircle touches the sides $BC, CA, AB$, respectively. We denote by $I$ the incenter and by $P$ its projection onto $AA' $. Let $M$ be the midpoint of the line segment $[A'B']$ and $N$ be the intersection point of the lines $MP$ and $AC$. Prove that $A'N $is parallel to $B'C'$

Day 2

1

Let $a_1, a_2, ..., a_n$ be real numbers such that $a_1 = a_n = a$ and $a_{k+1} \le \frac{a_k + a_{k+2}}{2} $, for all $k = 1, 2, ..., n - 2$. Prove that $a_k \le a,$ for all $k = 1, 2, ..., n.$

2

From an $n \times n $ square, $n \ge 2,$ the unit squares situated on both odd numbered rows and odd numbers columns are removed. Determine the minimum number of rectangular tiles needed to cover the remaining surface.

3

Let $m$ and $n$ be two positive integers, $m, n \ge 2$. Solve in the set of the positive integers the equation $x^n + y^n = 3^m$.

4

The quadrilateral $ABCD$ is inscribed in a circle centered at $O$, and $\{P\} = AC \cap BD, \{Q\} = AB \cap CD$. Let $R$ be the second intersection point of the circumcircles of the triangles $ABP$ and $CDP$. a) Prove that the points $P, Q$, and $R$ are collinear. b) If $U$ and $V$ are the circumcenters of the triangles $ABP$, and $CDP$, respectively, prove that the points $U, R, O, V$ are concyclic.

Day 3

1

Let $a, b, c, d$ be distinct non-zero real numbers satisfying the following two conditions: $ac = bd$ and $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}= 4$. Determine the largest possible value of the expression $\frac{a}{c}+\frac{c}{a}+\frac{b}{d}+\frac{d}{b}$.

2

Consider a semicircle of center $O$ and diameter $[AB]$, and let $C$ be an arbitrary point on the segment $(OB)$. The perpendicular to the line $AB$ through $C$ intersects the semicircle in $D$. A circle centered in $P$ is tangent to the arc $BD$ in $F$ and to the segments $[AB]$ and $[CD]$ in $G$ and $E$, respectively. Prove that the triangle $ADG$ is isosceles.

3

Positive integers $a, b, c$ have greatest common divisor $1$. The triplet $(a, b, c)$ may be altered into another triplet such that in each step one of the numbers in the actual triplet is increased or decreased by an integer multiple of another element of the triplet. Prove that the triplet $(1,0,0)$ can be obtained in at most $5$ steps.

4

Consider the set $A = \{1, 2, 3, ..., 2n - 1\}$, where $n \ge 2$ is a positive integer. We remove from the set $A$ at least $n - 1$ elements such that: • if $a \in A$ has been removed, and $2a \in A$, then $2a$ has also been removed, • if $a, b \in A (a \ne b)$ have been removed and $a + b \in A$, then $a + b$ has also been removed. Which numbers have to be removed such that the sum of the remaining numbers is maximum?

Day 4

1

Show that, for all positive real numbers $a, b, c$ such that $abc = 1$, the inequality $$\frac{1}{1 + a^2 + (b + 1)^2} +\frac{1}{1 + b^2 + (c + 1)^2} +\frac{1}{1 + c^2 + (a + 1)^2} \le \frac{1}{2}$$

2

Let us choose arbitrarily $n$ vertices of a regular $2n$-gon and color them red. The remaining vertices are colored blue. We arrange all red-red distances into a nondecreasing sequence and do the same with the blue-blue distances. Prove that the two sequences thus obtained are identical.

3

Let $ABC$ be an arbitrary triangle, and let $M, N, P$ be any three points on the sides $BC, CA, AB$ such that the lines $AM, BN, CP$ concur. Let the parallel to the line $AB$ through the point $N$ meet the line $MP$ at a point $E$, and let the parallel to the line $AB$ through the point $M$ meet the line $NP$ at a point $F$. Then, the lines $CP, MN$ and $EF$ are concurrent. MOP 97 problemLet $ABC$ be a triangle, and $M$, $N$, $P$ the points where its incircle touches the sides $BC$, $CA$, $AB$, respectively. The parallel to $AB$ through $N$ meets $MP$ at $E$, and the parallel to $AB$ through $M$ meets $NP$ at $F$. Prove that the lines $CP$, $MN$, $EF$ are concurrent. also

4

A positive integer is called lonely if the sum of the inverses of its positive divisors (including $1$ and itself) is not equal with the some of the inverses of the positive divisors of any other positive integer. a) Show that any prime number is lonely. b) Prove that there are infinitely many numbers that are not lonely