Call a positive integer balanced if the number of its distinct prime factors is equal to the number of its digits in the decimal representation; for example, the number $385 = 5 \cdot 7 \cdot 11$ is balanced, while $275 = 5^2 \cdot 11$ is not. Prove that there exist only a finite number of balanced numbers.
2011 Junior Balkan Team Selection Tests - Romania
Day 1
Let $A_1A_2A_3A_4A_5$ be a convex pentagon. Suppose rays $A_2A_3$ and $A_5A_4$ meet at the point $X_1$. Define $X_2$, $X_3$, $X_4$, $X_5$ similarly. Prove that $$\displaystyle\prod_{i=1}^{5} X_iA_{i+2} = \displaystyle\prod_{i=1}^{5} X_iA_{i+3}$$where the indices are taken modulo 5.
Let n be a positive integer and let $x_1, x_2,...,x_n$ and $y_1, y_2,...,y_n$ be real numbers. Prove that there exists a number $i, i = 1, 2,...,n$, such that $$\sum_{j=1}^n |x_i - x_j | \le \sum_{j=1}^n |x_i - y_j | $$
Let $k$ and $n$ be integer numbers with $2 \le k \le n - 1$. Consider a set $A$ of $n$ real numbers such that the sum of any $k$ distinct elements of $A$ is a rational number. Prove that all elements of the set $A$ are rational numbers.
Consider $n$ persons, each of them speaking at most $3$ languages. From any $3$ persons there are at least two which speak a common language. i) For $n \le 8$, exhibit an example in which no language is spoken by more than two persons. ii) For $n \ge 9$, prove that there exists a language which is spoken by at least three persons
Day 2
Determine a) the smallest number b) the biggest number $n \ge 3$ of non-negative integers $x_1, x_2, ... , x_n$, having the sum $2011$ and satisfying: $x_1 \le | x_2 - x_3 | , x_2 \le | x_3 - x_4 | , ... , x_{n-2} \le | x_{n-1} -x_n | , x_{n-1} \le | x_n - x_1 |$ and $x_n \le | x_1 - x_2 | $.
a) Prove that if the sum of the non-zero digits $a_1, a_2, ... , a_n$ is a multiple of $27$, then it is possible to permute these digits in order to obtain an $n$-digit number that is a multiple of $27$. b) Prove that if the non-zero digits $a_1, a_2, ... , a_n$ have the property that every ndigit number obtained by permuting these digits is a multiple of $27$, then the sum of these digits is a multiple of $27$
We consider an $n \times n$ ($n \in N, n \ge 2$) square divided into $n^2$ unit squares. Determine all the values of $k \in N$ for which we can write a real number in each of the unit squares such that the sum of the $n^2$ numbers is a positive number, while the sum of the numbers from the unit squares of any $k \times k$ square is a negative number.
The measure of the angle $\angle A$ of the acute triangle $ABC$ is $60^o$, and $HI = HB$, where $I$ and $H$ are the incenter and the orthocenter of the triangle $ABC$. Find the measure of the angle $\angle B$.
Day 3
It is said that a positive integer $n > 1$ has the property ($p$) if in its prime factorization $n = p_1^{a_1} \cdot ... \cdot p_j^{a_j}$ at least one of the prime factors $p_1, ... , p_j$ has the exponent equal to $2$. a) Find the largest number $k$ for which there exist $k$ consecutive positive integers that do not have the property ($p$). b) Prove that there is an infinite number of positive integers $n$ such that $n, n + 1$ and $n + 2$ have the property ($p$).
Find all the finite sets $A$ of real positive numbers having at least two elements, with the property that $a^2 + b^2 \in A$ for every $a, b \in A$ with $a \ne b$
Let $ABC$ be a triangle, $I_a$ the center of the excircle at side $BC$, and $M$ its reflection across $BC$. Prove that $AM$ is parallel to the Euler line of the triangle $BCI_a$.
Let $m$ be a positive integer. Determine the smallest positive integer $n$ for which there exist real numbers $x_1, x_2,...,x_n \in (-1, 1)$ such that $|x_1| + |x_2| +...+ |x_n| = m + |x_1 + x_2 + ... + x_n|$.
Day 4
For every positive integer $n$ let $\tau (n)$ denote the number of its positive factors. Determine all $n \in N$ that satisfy the equality $\tau (n) = \frac{n}{3}$
Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP = OQ.$ Proposed by Sergei Berlov, Russia
a) Find the largest possible value of the number $x_1x_2 + x_2x_3 + ... + x_{n-1}x_n$, if $x_1, x_2, ... , x_n$ ($n \ge 2$) are non-negative integers and their sum is $2011$. b) Find the numbers $x_1, x_2, ... , x_n$ for which the maximum value determined at a) is obtained
Show that there is an infinite number of positive integers $t$ such that none of the equations $$ \begin{cases} x^2 + y^6 = t \\ x^2 + y^6 = t + 1 \\ x^2 - y^6 = t \\ x^2 - y^6 = t + 1 \end{cases}$$has solutions $(x, y) \in Z \times Z$.