The bisector of angle $B$ and the bisector of external angle $D$ of rectangle $ABCD$ intersect side $AD$ and line $AB$ at points $M$ and $K$, respectively. Prove that the segment $MK$ is equal and perpendicular to the diagonal of the rectangle.
2011 Oral Moscow Geometry Olympiad
grades 8-9
In an isosceles triangle $ABC$ ($AB=AC$) on the side $BC$, point $M$ is marked so that the segment $CM$ is equal to the altitude of the triangle drawn on this side, and on the side $AB$, point $K$ is marked so that the angle $\angle KMC$ is right. Find the angle $\angle ACK$.
A $2\times 2$ square was cut from a squared sheet of paper. Using only a ruler without divisions and without going beyond the square, divide the diagonal of the square into $6$ equal parts.
In the trapezoid $ABCD, AB = BC = CD, CH$ is the altitude. Prove that the perpendicular from $H$ on $AC$ passes through the midpoint of $BD$.
Let $AA _1$ and $BB_1$ be the altitudes of an isosceles acute-angled triangle $ABC, M$ the midpoint of $AB$. The circles circumscribed around the triangles $AMA_1$ and $BMB_1$ intersect the lines $AC$ and $BC$ at points $K$ and $L$, respectively. Prove that $K, M$, and $L$ lie on the same line.
One triangle lies inside another. Prove that at least one of the two smallest sides (out of six) is the side of the inner triangle.
grades 10-11
$AD$ and $BE$ are the altitudes of the triangle $ABC$. It turned out that the point $C'$, symmetric to the vertex $C$ wrt to the midpoint of the segment $DE$, lies on the side $AB$. Prove that $AB$ is tangent to the circle circumscribed around the triangle $DEC'$.
Line $\ell $ intersects the plane $a$. It is known that in this plane there are $2011$ straight lines equidistant from $\ell$ and not intersecting $\ell$. Is it true that $\ell$ is perpendicular to $a$?
A non-isosceles trapezoid $ABCD$ ($AB // CD$) is given. An arbitrary circle passing through points $A$ and $B$ intersects the sides of the trapezoid at points $P$ and $Q$, and the intersect the diagonals at points $M$ and $N$. Prove that the lines $PQ, MN$ and $CD$ are concurrent.
Prove that any rigid flat triangle $T$ of area less than $4$ can be inserted through a triangular hole $Q$ with area $3$.
In a convex quadrilateral $ABCD, AC\perp BD, \angle BCA = 10^o,\angle BDA = 20^o, \angle BAC = 40^o$. Find $\angle BDC$.
Let $AA_1 , BB_1$, and $CC_1$ be the altitudes of the non-isosceles acute-angled triangle $ABC$. The circles circumscibred around the triangles $ABC$ and $A_1 B_1 C$ intersect again at the point $P , Z$ is the intersection point of the tangents to the circumscribed circle of the triangle $ABC$ conducted at points $A$ and $B$ . Prove that lines $AP , BC$ and $ZC_1$ are concurrent.