Prove that for any positive reals $ a,b,c,d $ with $ a+b+c+d = 4 $, we have $$ \sum\limits_{cyc}{\frac{3a^3}{a^2+ab+b^2}}+\sum\limits_{cyc}{\frac{2ab}{a+b}} \ge 8 $$
2019 Taiwan TST Round 2
1 - Quiz
Let $O$ be the circumcentre, and $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. Let $P$ be an arbitrary point on $\Omega$, distinct from $A$, $B$, $C$, and their antipodes in $\Omega$. Denote the circumcentres of the triangles $AOP$, $BOP$, and $COP$ by $O_A$, $O_B$, and $O_C$, respectively. The lines $\ell_A$, $\ell_B$, $\ell_C$ perpendicular to $BC$, $CA$, and $AB$ pass through $O_A$, $O_B$, and $O_C$, respectively. Prove that the circumcircle of triangle formed by $\ell_A$, $\ell_B$, and $\ell_C$ is tangent to the line $OP$.
2 - Quiz
Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$for all $x,y\in\mathbb{Q}_{>0}$
There are $ n \ge 3 $ puddings in a room. If a pudding $ A $ hates a pudding $ B $, then $ B $ hates $ A $ as well. Suppose the following two conditions holds: 1. Given any four puddings, there are two puddings who like each other. 2. For any positive integer $ m $, if there are $ m $ puddings who like each other, then there exists $ 3 $ puddings (from the other $ n-m $ puddings) that hate each other. Find the smallest possible value of $ n $.
3 - Quiz
A circle $\omega$ with radius $1$ is given. A collection $T$ of triangles is called good, if the following conditions hold: each triangle from $T$ is inscribed in $\omega$; no two triangles from $T$ have a common interior point. Determine all positive real numbers $t$ such that, for each positive integer $n$, there exists a good collection of $n$ triangles, each of perimeter greater than $t$.
Define the sequence $a_0,a_1,a_2,\hdots$ by $a_n=2^n+2^{\lfloor n/2\rfloor}$. Prove that there are infinitely many terms of the sequence which can be expressed as a sum of (two or more) distinct terms of the sequence, as well as infinitely many of those which cannot be expressed in such a way.
1 - Mock
Given any set $S$ of positive integers, show that at least one of the following two assertions holds: (1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$; (2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.
Given a triangle $ \triangle{ABC} $. Denote its incircle and circumcircle by $ \omega, \Omega $, respectively. Assume that $ \omega $ tangents the sides $ AB, AC $ at $ F, E $, respectively. Then, let the intersections of line $ EF $ and $ \Omega $ to be $ P,Q $. Let $ M $ to be the mid-point of $ BC $. Take a point $ R $ on the circumcircle of $ \triangle{MPQ} $, say $ \Gamma $, such that $ MR \perp EF $. Prove that the line $ AR $, $ \omega $ and $ \Gamma $ intersect at one point.
Alice and Bob want to play a game. In the beginning of the game, they are teleported to two random position on a train, whose length is $ 1 $ km. This train is closed and dark. So they dont know where they are. Fortunately, both of them have iPhone 133, it displays some information: 1. Your facing direction 2. Your total walking distance 3. whether you are at the front of the train 4. whether you are at the end of the train Moreover, one may see the information of the other one. Once Alice and Bob meet, the game ends. Alice and Bob can only discuss their strategy before the game starts. Find the least value $ x $ so that they are guarantee to end the game with total walking distance $ \le x $ km.
2 - Mock
Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \]turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )
Four positive integers $x,y,z$ and $t$ satisfy the relations \[ xy - zt = x + y = z + t. \]Is it possible that both $xy$ and $zt$ are perfect squares?
Given a triangle $ \triangle{ABC} $ whose incenter is $ I $ and $ A $-excenter is $ J $. $ A' $ is point so that $ AA' $ is a diameter of $ \odot\left(\triangle{ABC}\right) $. Define $ H_{1}, H_{2} $ to be the orthocenters of $ \triangle{BIA'} $ and $ \triangle{CJA'} $. Show that $ H_{1}H_{2} \parallel BC $