2018 Singapore Senior Math Olympiad

2nd Round

1

You are given some equilateral triangles and squares, all with side length 1, and asked to form convex $n$ sided polygons using these pieces. If both types must be used, what are the possible values of $n$, assuming that there is sufficient supply of the pieces?

2

In a convex quadrilateral $ABCD, \angle A < 90^o, \angle B < 90^o$ and $AB > CD$. Points $P$ and $Q$ are on the segments $BC$ and $AD$ respectively. Suppose the triangles $APD$ and $BQC$ are similar. Prove that $AB$ is parallel to $CD$.

3

Determine the largest positive integer $n$ such that the following statement is true: There exists $n$ real polynomials, $P_1(x),\ldots,P_n(x)$ such that the sum of any two of them have no real roots but the sum of any three does.

4

Let $a,b,c,d$ be positive integers such that $a+c=20$ and $\frac{a}{b}+\frac{c}{d}<1$. Find the maximum possible value of $\frac{a}{b}+\frac{c}{d}$.

5

Starting with any $n$-tuple $R_0$, $n\ge 1$, of symbols from $A,B,C$, we define a sequence $R_0, R_1, R_2,\ldots,$ according to the following rule: If $R_j= (x_1,x_2,\ldots,x_n)$, then $R_{j+1}= (y_1,y_2,\ldots,y_n)$, where $y_i=x_i$ if $x_i=x_{i+1}$ (taking $x_{n+1}=x_1$) and $y_i$ is the symbol other than $x_i, x_{i+1}$ if $x_i\neq x_{i+1}$. Find all positive integers $n>1$ for which there exists some integer $m>0$ such that $R_m=R_0$.