2016 Singapore Senior Math Olympiad

2nd Round

1

Let $\triangle ABC$ be a triangle with $AB < AC$. Let the angle bisector of $\angle BAC$ meet $BC$ at $D$ , and let $M$ be the midpoint of $BC$ . Let $P$ be the foot of the perpendicular from $B$ to $AD$ . $Q$ the intersection of $BP$ and $AM$ . Show that : $(DQ) // (AB) $ .

2

Let $n$ be a positive integer. Determine the minimum number of lines that can be drawn on the plane so that they intersect in exactly $n$ distinct points.

3

For any integer $n \ge 1$, show that $$\sum_{k=1}^{n} \frac{2^k}{\sqrt{k+0.5}} \le 2^{n+1}\sqrt{n+1}-\frac{4n^{3/2}}{3}$$

4

Let $P$ be a $2016$ sided polygon with all its adjacent sides perpendicular to each other, i.e., all its internal angles are either $90^o$ or $270^o$. If the lengths of its sides are odd integers, prove that its area is an even integer.

5

For each integer $n > 1$, find a set of $n$ integers $\{a_1, a_2,..., a_n\}$ such that the set of numbers $\{a_1+a_j | 1 \le i \le j \le n\}$ leave distinct remainders when divided by $n(n + 1)/2$. If such a set of integers does not exist, give a proof.