There are $n \ge 3$ distinct positive real numbers. Show that there are at most $n-2$ different integer power of three that can be written as the sum of three distinct elements from these $n$ numbers.
2020 Canada National Olympiad
$ABCD$ is a fixed rhombus. Segment $PQ$ is tangent to the inscribed circle of $ABCD$, where $P$ is on side $AB$, $Q$ is on side $AD$. Show that, when segment $PQ$ is moving, the area of $\Delta CPQ$ is a constant.
There are finite many coins in David’s purse. The values of these coins are pair wisely distinct positive integers. Is that possible to make such a purse, such that David has exactly $2020$ different ways to select the coins in his purse and the sum of these selected coins is $2020$?
$S= \{1,4,8,9,16,...\} $is the set of perfect integer power. ( $S=\{ n^k| n, k \in Z, k \ge 2 \}$. )We arrange the elements in $S$ into an increasing sequence $\{a_i\}$ . Show that there are infinite many $n$, such that $9999|a_{n+1}-a_n$
Simple graph $G$ has $19998$ vertices. For any subgraph $\bar G$ of $G$ with $9999$ vertices, $\bar G$ has at least $9999$ edges. Find the minimum number of edges in $G$