1999 Abels Math Contest (Norwegian MO)

1a

Find a function $f$ such that $f(t^2 +t +1) = t$ for all real $t \ge 0$

1b

If $a,b,c,d,e$ are real numbers, prove the inequality $a^2 +b^2 +c^2 +d^2+e^2 \ge a(b+c+d+e)$.

2a

Find all integers $m$ and $n$ such that $2m^2 +n^2 = 2mn+3n$

2b

If $a,b,c$ are positive integers such that $b | a^3, c | b^3$ and $a | c^3$ , prove that $abc | (a+b+c)^{13}$

3

An isosceles triangle $ABC$ with $AB = AC$ and $\angle A = 30^o$ is inscribed in a circle with center $O$. Point $D$ lies on the shorter arc $AC$ so that $\angle DOC = 30^o$, and point $G$ lies on the shorter arc $AB$ so that $DG = AC$ and $AG < BG$. The line $BG$ intersects $AC$ and $AB$ at $E$ and $F$, respectively. (a) Prove that triangle $AFG$ is equilateral. (b) Find the ratio between the areas of triangles $AFE$ and $ABC$.

4

For every nonempty subset $R$ of $S = \{1,2,...,10\}$, we define the alternating sum $A(R)$ as follows: If $r_1,r_2,...,r_k$ are the elements of $R$ in the increasing order, then $A(R) = r_k -r_{k-1} +r_{k-2}- ... +(-1)^{k-1}r_1$. (a) Is it possible to partition $S$ into two sets having the same alternating sum? (b) Determine the sum $\sum_{R} A(R)$, where $R$ runs over all nonempty subsets of $S$.