1995 Abels Math Contest (Norwegian MO)

1a

Let a function $f$ satisfy $f(1) = 1$ and $f(1)+ f(2)+...+ f(n) = n^2f(n)$ for all $n \in N$. Determine $f(1995)$.

1b

Prove that if $(x+\sqrt{x^2 +1})(y+\sqrt{y^2 +1})= 1$ for real numbers $x,y$, then $x+y = 0$.

2a

Two circles $k_1,k_2$ touch each other at $P$, and touch a line $\ell$ at $A$ and $B$ respectively. Line $AP$ meets $k_2$ at $C$. Prove that $BC$ is perpendicular to $\ell$.

2b

Two circles of the same radii intersect in two distinct points $P$ and $Q$. A line passing through $P$, not touching any of the circles, intersects the circles again at $A$ and $B$. Prove that $Q$ lies on the perpendicular bisector of $AB$.

3

Show that there exists a sequence $x_1,x_2,...$ of natural numbers in which every natural number occurs exactly once, such that the sums $\sum_{i=1}^n \frac{1}{x_i}$, $n = 1,2,3,...$, include all natural numbers.

4

Let $x_i,y_i$ be positive real numbers, $i = 1,2,...,n$. Prove that $$\left( \sum_{i=1}^n (x_i +y_i)^2\right)\left( \sum_{i=1}^n\frac{1}{x_iy_i}\right)\ge 4n^2$$