Find all functions $f : R \to R$ which for all $x, y \in R$ satisfy $f(x^2)f(y^2) + |x|f(-xy^2) = 3|y|f(x^2y)$.
Problem
Source: Estonia IMO TST 2019 p3
Tags: algebra, functional equation, functional
23.07.2020 21:07
Let $\rm P(x,y): f(x^2)f(y^2) + |x|f(-xy^2) = 3|y|f(x^2y) $. $\rm P(0,0): f(0)=0$, so we consider below that $\rm x,y\neq 0$. $\rm P(-x,y): f(x^2)f(y^2) + |x|f(xy^2) = 3|y|f(x^2y)$ so we have that $\rm |x|f(xy^2)=|x|f(-xy^2)\Leftrightarrow f(x)=f(-x)$. So we work in interval $\rm (0,+\infty)$. $\rm P(y,x): f(x^2)f(y^2)+yf(yx^2)=3xf(y^2x)$ so we have that $\rm xf(xy^2)-yf(yx^2)=3yf(x^2y)-3xf(y^2x)\Leftrightarrow xf(xy^2)=yf(x^2y)\,\,\,(*)$.From this for $\rm y=1$ we have $\rm xf(x)=f(x^2)$. Let $\rm f(1)=a$.$\rm P(1,1): a^2+=3a \Leftrightarrow a=0\,\,or \,\,\,a=2$. If $\rm a=0$ then $\rm P(x,1): xf(x)=3f(x^2)\Leftrightarrow 3f(x^2)=f(x^2)\Leftrightarrow f(x^2)=0\Leftrightarrow f(x)=0,x>0$. Since $\rm f(x)=f(-x)$ we have $\boxed {\rm f(x)=0,\forall x\in \mathbb{R}}$. If $\rm a=2$ we set $\rm x=\dfrac{1}{y^2}$ at $(*)$ : $\rm \dfrac{2}{y^2}=yf(\dfrac{1}{y^3})\overset{\dfrac{1}{y^3}\rightarrow x }{\Leftrightarrow} f(x)=2x$.Since $\rm f(x)=f(-x)$ we have $\boxed {\rm f(x)=|2x|,\forall x\in \mathbb{R}}(\rm verified)$
01.10.2020 08:44
The date doesn't fit name of the forum. 2019 is old?
01.10.2020 15:05
My posting ability in public forums is as everyone’s else limited. Therefore when I post in public forums, I post only the geometry problems. When my source is written not in English, only the geometry ones are posted as I spend time translating them by google translate. When my source is written in English, I post the whole problem set in aops, posting the non-geometry problems in this forum and adding all the problems in contest collections. In this forum’s index, anyone may find which contests’ years have been posted inside this forum.
01.10.2020 23:47
Now I get it.
26.08.2022 21:21
Fun problem ! Let $P(x,y) : f(x^2)f(y^2) + |x|f(-xy^2) = 3|y|f(x^2y)$. $P(-x,y) : f(x^2)f(y^2)+|-x|f(-xy^2)=3|y|f(x^2y)$ . ( ) $P(x,y) : f(x^2)f(y^2) + |x|f(-xy^2) = 3|y|f(x^2y)$ . ( ) ( ) - ( ) then we can see $|-x|f(xy^2)=|x|f(-xy^2) $ . If $y=1$ we can see $\left | \frac{-x}{x} \right | = \frac{f(-x)}{f(x)}$ or $f(x)=f(-x)$ . $P(y,x) : f(x^2)=|x|f(x)$ . ( ) $P(x,1) : |x|f(1)f(x)+|x|f(x)=3f(x^2) \to |x|f(1)f(x)+f(x^2)=3f(x^2) \to f(1)=2$ By ( ) and $P(\frac{1}{x^2} , x) : \frac{2}{y^2} = yf(\frac{1}{y^3})$ we get $f(x)=|2x|$ . $\blacksquare$
01.03.2023 22:34
Here is my solution: https://calimath.org/pdf/EstoniaTST2019-3.pdf And I uploaded the solution with motivation to: https://youtu.be/bOmrlmG1Gig