Let $m$ and $n$ be positive integers. Player $A$ has a field of $m \times n$, and player $B$ has a $1 \times n$ field (the first is the number of rows). On the first move, each player places on each square of his field white or black chip as he pleases. At each next on the move, each player can change the color of randomly chosen pieces on your field to the opposite, provided that in no row for this move will not change more than one chip (it is allowed not to change not a single chip). The moves are made in turn, player $A$ starts. Player $A$ wins if there is such a position that in the only row player $B$'s squares, from left to right, are the same as in some row of player's field $A$. Prove that player $A$ has the ability to win for any game of player $B$ if and only if $n <2m$.