We call the polynomial $P (x)$ simple if the coefficient of each of its members belongs to the set $\{-1, 0, 1\}$. Let $n$ be a positive integer, $n> 1$. Find the smallest possible number of terms with a non-zero coefficient in a simple $n$-th degree polynomial with all values at integer places are divisible by $n$.
Problem
Source: Estonia IMO TST 2018 p12
Tags: polynomial, divisible
ILOVEMYFAMILY
08.02.2022 10:45
Bump bummp
shinhue
17.01.2023 17:17
bump bump
laikhanhhoang_3011
19.01.2023 07:58
We can easily see the numbers of terms different from $0$ cant be equal to $1,$ so it is not smaller than $2$ and we'll prove $2$ is satisfied.
Assume $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$ and consider the polynomial $Q(x)=x^{e_1+e_2+...+e_k}\left ( x^{\varphi (n)}-1 \right ).$
For any $p_i,$ if $p_i \mid x,$ then $p_i^{e_i} \mid x^{e_1+e_2+...+e_k}$ or if $(x,p_i)=1,$ then $p_i^{e_i} \mid x^{\varphi (n)}-1.$
In short, for any $x,$ $p_i^{e_i} \mid Q(x) , \, \forall i=\overline{1,k}$ or $n \mid Q(x).$
Now, if we have $deg(Q(x))=d \leq n,$ then $P(x)=x^{n-d}.Q(x)$ satisfied. So it suffice to prove $e_1+e_2+...+e_n + \varphi (n) \leq n,$ this is an easy ineq.