Vulcan and Neptune play a turn-based game on an infinite grid of unit squares. Before the game starts, Neptune chooses a finite number of cells to be flooded. Vulcan is building a levee, which is a subset of unit edges of the grid (called walls) forming a connected, non-self-intersecting path or loop*. The game then begins with Vulcan moving first. On each of Vulcan’s turns, he may add up to three new walls to the levee (maintaining the conditions for the levee). On each of Neptune’s turns, every cell which is adjacent to an already flooded cell and with no wall between them becomes flooded as well. Prove that Vulcan can always, in a finite number of turns, build the levee into a closed loop such that all flooded cells are contained in the interior of the loop, regardless of which cells Neptune initially floods. *More formally, there must exist lattice points $\mbox{\footnotesize \(A_0, A_1, \dotsc, A_k\)}$, pairwise distinct except possibly $\mbox{\footnotesize \(A_0 = A_k\)}$, such that the set of walls is exactly $\mbox{\footnotesize \(\{A_0A_1, A_1A_2, \dotsc , A_{k-1}A_k\}\)}$. Once a wall is built it cannot be destroyed; in particular, if the levee is a closed loop (i.e. $\mbox{\footnotesize \(A_0 = A_k\)}$) then Vulcan cannot add more walls. Since each wall has length $\mbox{\footnotesize \(1\)}$, the length of the levee is $\mbox{\footnotesize \(k\)}$.
2020 USA EGMO Team Selection Test
Thursday, December 12th, 2019 - TST #1
Let $ABC$ be a triangle and let $P$ be a point not lying on any of the three lines $AB$, $BC$, or $CA$. Distinct points $D$, $E$, and $F$ lie on lines $BC$, $AC$, and $AB$, respectively, such that $\overline{DE}\parallel \overline{CP}$ and $\overline{DF}\parallel \overline{BP}$. Show that there exists a point $Q$ on the circumcircle of $\triangle AEF$ such that $\triangle BAQ$ is similar to $\triangle PAC$. Andrew Gu
Choose positive integers $b_1, b_2, \dotsc$ satisfying \[1=\frac{b_1}{1^2} > \frac{b_2}{2^2} > \frac{b_3}{3^2} > \frac{b_4}{4^2} > \dotsb\]and let $r$ denote the largest real number satisfying $\tfrac{b_n}{n^2} \geq r$ for all positive integers $n$. What are the possible values of $r$ across all possible choices of the sequence $(b_n)$? Carl Schildkraut and Milan Haiman
Thursday, January 23rd, 2020 - TST #2
Let $ABC$ be a triangle. Distinct points $D$, $E$, $F$ lie on sides $BC$, $AC$, and $AB$, respectively, such that quadrilaterals $ABDE$ and $ACDF$ are cyclic. Line $AD$ meets the circumcircle of $\triangle ABC$ again at $P$. Let $Q$ denote the reflection of $P$ across $BC$. Show that $Q$ lies on the circumcircle of $\triangle AEF$. Proposed by Ankan Bhattacharya
Let $G = (V, E)$ be a finite simple graph on $n$ vertices. An edge $e$ of $G$ is called a bottleneck if one can partition $V$ into two disjoint sets $A$ and $B$ such that at most $100$ edges of $G$ have one endpoint in $A$ and one endpoint in $B$; and the edge $e$ is one such edge (meaning the edge $e$ also has one endpoint in $A$ and one endpoint in $B$). Prove that at most $100n$ edges of $G$ are bottlenecks. Proposed by Yang Liu
Find the largest integer $N \in \{1, 2, \ldots , 2019 \}$ such that there exists a polynomial $P(x)$ with integer coefficients satisfying the following property: for each positive integer $k$, $P^k(0)$ is divisible by $2020$ if and only if $k$ is divisible by $N$. Here $P^k$ means $P$ applied $k$ times, so $P^1(0)=P(0), P^2(0)=P(P(0)),$ etc.