2020 CHKMO

1

Given that ${a_n}$ and ${b_n}$ are two sequences of integers defined by \begin{align*} a_1=1, a_2=10, a_{n+1}=2a_n+3a_{n-1} & ~~~\text{for }n=2,3,4,\ldots, \\ b_1=1, b_2=8, b_{n+1}=3b_n+4b_{n-1} & ~~~\text{for }n=2,3,4,\ldots. \end{align*} Prove that, besides the number $1$, no two numbers in the sequences are identical.

2

Let $S={1,2,\ldots,100}$. Consider a partition of $S$ into $S_1,S_2,\ldots,S_n$ for some $n$, i.e. $S_i$ are nonempty, pairwise disjoint and $\displaystyle S=\bigcup_{i=1}^n S_i$. Let $a_i$ be the average of elements of the set $S_i$. Define the score of this partition by \[\dfrac{a_1+a_2+\ldots+a_n}{n}.\] Among all $n$ and partitions of $S$, determine the minimum possible score.

3

Let $\Delta ABC$ be an isosceles triangle with $AB=AC$. The incircle $\Gamma$ of $\Delta ABC$ has centre $I$, and it is tangent to the sides $AB$ and $AC$ at $F$ and $E$ respectively. Let $\Omega$ be the circumcircle of $\Delta AFE$. The two external common tangents of $\Gamma$ and $\Omega$ intersect at a point $P$. If one of these external common tangents is parallel to $AC$, prove that $\angle PBI=90^{\circ}$.

4

There are $n\geq 3$ cities in a country and between any two cities $A$ and $B$, there is either a one way road from $A$ to $B$, or a one way road from $B$ to $A$ (but never both). Assume the roads are built such that it is possible to get from any city to any other city through these roads, and define $d(A,B)$ to be the minimum number of roads you must go through to go from city $A$ to $B$. Consider all possible ways to build the roads. Find the minimum possible average value of $d(A,B)$ over all possible ordered pairs of distinct cities in the country.