Define the sequence $a_1 = 2$ and $a_n = 2^{a_{n-1}} + 2$ for all integers $n \ge 2$. Prove that $a_{n-1}$ divides $a_n$ for all integers $n \ge 2$. Proposed by Sam Korsky
2015 ELMO Problems
Let $m$, $n$, and $x$ be positive integers. Prove that \[ \sum_{i = 1}^n \min\left(\left\lfloor \frac{x}{i} \right\rfloor, m \right) = \sum_{i = 1}^m \min\left(\left\lfloor \frac{x}{i} \right\rfloor, n \right). \] Proposed by Yang Liu
Let $\omega$ be a circle and $C$ a point outside it; distinct points $A$ and $B$ are selected on $\omega$ so that $\overline{CA}$ and $\overline{CB}$ are tangent to $\omega$. Let $X$ be the reflection of $A$ across the point $B$, and denote by $\gamma$ the circumcircle of triangle $BXC$. Suppose $\gamma$ and $\omega$ meet at $D \neq B$ and line $CD$ intersects $\omega$ at $E \neq D$. Prove that line $EX$ is tangent to the circle $\gamma$. Proposed by David Stoner
Let $a > 1$ be a positive integer. Prove that for some nonnegative integer $n$, the number $2^{2^n}+a$ is not prime. Proposed by Jack Gurev
Let $m, n, k > 1$ be positive integers. For a set $S$ of positive integers, define $S(i,j)$ for $i<j$ to be the number of elements in $S$ strictly between $i$ and $j$. We say two sets $(X,Y)$ are a fat pair if \[ X(i,j)\equiv Y(i,j) \pmod{n} \] for every $i,j \in X \cap Y$. (In particular, if $\left\lvert X \cap Y \right\rvert < 2$ then $(X,Y)$ is fat.) If there are $m$ distinct sets of $k$ positive integers such that no two form a fat pair, show that $m<n^{k-1}$. Proposed by Allen Liu